Building Fluency Through Games

Developing fluency requires a balance and connection between conceptual understanding and computational proficiency. Computational methods that are over-practiced without understanding are forgotten or remembered incorrectly. Conceptual understanding without fluency can inhibit the problem solving process. NCTM, *Principles and Standards for School Mathematics*, pg. 35

Why Play Games?

People of all ages love to play games. They are fun and motivating. Games provide students with opportunities to explore fundamental number concepts, such as the counting sequence, one-to-one correspondence, and computation strategies. Engaging mathematical games can also encourage students to explore number combinations, place value, patterns, and other important mathematical concepts. Further, they provide opportunities for students to deepen their mathematical understanding and reasoning. Teachers should provide repeated opportunities for students to play games, and let the mathematical ideas emerge as they notice new patterns, relationships, and strategies. Games are an important tool for learning. Here are some advantages for integrating games into elementary mathematics classrooms:

- Playing games encourages strategic mathematical thinking as students find different strategies for solving problems and it deepens their understanding of numbers.
- Games, when played repeatedly, support students’ development of computational fluency.
- Games provide opportunities for practice, often without the need for teachers to provide the problems. Teachers can then observe or assess students, or work with individual or small groups of students.
- Games have the potential to develop familiarity with the number system and with “benchmark numbers” – such as 10s, 100s, and 1000s and provide engaging opportunities to practice computation, building a deeper understanding of operations.
- Games provide a school to home connection. Parents can learn about their children’s mathematical thinking by playing games with them at home.

Building Fluency

Developing computational fluency is an expectation of the Common Core State Standards. Games provide opportunity for meaningful practice. The research about how students develop fact mastery indicates that drill techniques and timed tests do not have the power that mathematical games and other experiences have. Appropriate mathematical activities are essential building blocks to develop mathematically proficient students who demonstrate computational fluency (Van de Walle & Lovin, *Teaching Student-Centered Mathematics Grades K-3*, pg. 94). Remember, computational fluency includes efficiency, accuracy, and flexibility with strategies (Russell, 2000).

The kinds of experiences teachers provide to their students clearly play a major role in determining the extent and quality of students’ learning. Students’ understanding can be built by actively engaging in tasks and experiences designed to deepen and connect their knowledge. Procedural fluency and conceptual understanding can be developed through problem solving, reasoning, and argumentation (NCTM, *Principles and Standards for School Mathematics*, pg. 21). Meaningful practice is necessary to develop fluency with basic number combinations and strategies with multi-digit numbers. Practice should be purposeful and should focus on developing thinking strategies and a knowledge of number relationships rather than drill isolated facts (NCTM, *Principles and Standards for School Mathematics*, pg. 87). Do not subject any student to computation drills unless the student has developed an efficient strategy for the facts included in the drill (Van de Walle & Lovin, *Teaching Student-Centered Mathematics Grades K-3*, pg. 117). Drill can strengthen strategies with which students feel comfortable—ones they “own”—and will help to make these strategies increasingly automatic. Therefore, drill of strategies will allow students to use them with increased efficiency, even to the point of recalling the fact without being conscious of using a strategy. Drill without an efficient strategy present offers no assistance (Van de Walle & Lovin, *Teaching Student-Centered Mathematics Grades K-3*, pg. 117).
Cautions
Sometimes teachers use games solely to practice number facts. These games usually do not engage children for long because they are based on students’ recall or memorization of facts. Some students are quick to memorize, while others need a few moments to use a related fact to compute. When students are placed in situations in which recall speed determines success, they may infer that being “smart” in mathematics means getting the correct answer quickly instead of valuing the process of thinking. Consequently, students may feel incompetent when they use number patterns or related facts to arrive at a solution and may begin to dislike mathematics because they are not fast enough.

Introduce a game
A good way to introduce a game to the class is for the teacher to play the game against the class. After briefly explaining the rules, ask students to make the class’s next move. Teachers may also want to model their strategy by talking aloud for students to hear his/her thinking. “I placed my game marker on 6 because that would give me the largest number.”

Games are fun and can create a context for developing students’ mathematical reasoning. Through playing and analyzing games, students also develop their computational fluency by examining more efficient strategies and discussing relationships among numbers. Teachers can create opportunities for students to explore mathematical ideas by planning questions that prompt students to reflect about their reasoning and make predictions. Remember to always vary or modify the game to meet the needs of your learners. Encourage the use of the Standards for Mathematical Practice.

Holding Students Accountable
While playing games, have students record mathematical equations or representations of the mathematical tasks. This provides data for students and teachers to revisit to examine their mathematical understanding.

After playing a game have students reflect on the game by asking them to discuss questions orally or write about them in a mathematics notebook or journal:
1. What skill did you review and practice?
2. What strategies did you use while playing the game?
3. If you were to play the games a second time, what different strategies would you use to be more successful?
4. How could you tweak or modify the game to make it more challenging?

For students to become fluent in arithmetic computation, they must have efficient and accurate methods that are supported by an understanding of numbers and operations. “Standard” algorithms for arithmetic computation are one means of achieving this fluency.
NCTM, Principles and Standards for School Mathematics, pg. 35

Overemphasizing fast fact recall at the expense of problem solving and conceptual experiences gives students a distorted idea of the nature of mathematics and of their ability to do mathematics.
Seeley, Faster Isn’t Smarter: Messages about Math, Teaching, and Learning in the 21st Century, pg. 95

Fluency refers to having efficient, accurate, and generalizable methods (algorithms) for computing that are based on well-understood properties and number relationships.
NCTM, Principles and Standards for School Mathematics, pg. 144

Computational fluency refers to having efficient and accurate methods for computing. Students exhibit computational fluency when they demonstrate flexibility in the computational methods they choose, understand and can explain these methods, and produce accurate answers efficiently.
NCTM, Principles and Standards for School Mathematics, pg. 152